Existence and uniqueness of algebraic function approximations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Uniqueness of Collocating Algebraic Function Approximations

The problem of approximating a real-valued function by an algebraic function, where the approximation is determined by collocation at a sufficient number of distinct nodes, is considered. Results are obtained for the existence, uniqueness and order of approximation for both 'normal' and 'non-normal' cases. Some illustrative examples are given. AMS classification: 41A21, 41A30.

متن کامل

Existence and uniqueness results for neural network approximations

Some approximation theoretic questions concerning a certain class of neural networks are considered. The networks considered are single input, single output, single hidden layer, feedforward neural networks with continuous sigmoidal activation functions, no input weights but with hidden layer thresholds and output layer weights. Specifically, questions of existence and uniqueness of best approx...

متن کامل

Existence and uniqueness results for fuzzy linear differential-algebraic equations

We discuss the existence results for a fuzzy initial value problem of linear differential-algebraic equations and provide an explicit representation for the solution. A few illustrative examples are given. © 2014 Elsevier B.V. All rights reserved.

متن کامل

Uniqueness of simultaneous approximations in continuous function spaces

The present work is concerned with the uniqueness problem of best simultaneous approximation. An n-dimensional l1or l∞-simultaneous unicity space is characterized in terms of Property A. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 1992

ISSN: 0176-4276,1432-0940

DOI: 10.1007/bf01208902